LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS

THIRD SEMESTER - NOVEMBER 2009

S 940 - ECONOMETRICS

SECTION A

Date & Time: 12/11/2009 / 9:00 - 12:00 Dept. No.

Answer all questions.

- 1. Define Econometrics.
- 2. Show that the least square estimators are unbiased.
- 3. State BLUE property.
- 4. Define linear hypothesis.
- 5. What information does the coefficient of determination provide?
- 6. Mention any two methods to overcome the problem of collinearity.
- 7. What is heteroscedasticity?
- 8. What are lagged variables?
- 9. Mention any one use of having dummy variables in a model.
- 10. Define Instrumental variable.

SECTION B

Answer any FIVE questions.

swei	r any FIVE	2 questio	ons.						(5x8 :	=40)
11.	Fit a linear	model c	of Y on 2	X for th	e follov	ving dat	a and c	btain th	e residu	als.
	Y:	12	15	22	27	28	30	35	40	
	X:	2	5	7	9	11	13	15	17	

- 12. For the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$, explain the method of testing $\beta_1 = \beta_2 = 0$
- 13. Write short notes on (i) Specification error (ii) Dummy variables.
- 14. Explain the method of Ridge regression.
- 15. Explain the concept of generalized least squares.
- 16. Describe the method of estimating simultaneous equation models.
- 17. Explain the concept of two stage least squares method.
- 18. For the model $Y = X\hat{\beta} + u$, find $V(\hat{\beta})$ under the assumption of unequal variances of u.

SECTION C

Answer any TWO questions.

(2x20=40)

19. State and prove the Gauss – Markov theorem.

- 20. a.) Mention the assumptions of a linear model.
 - b.) Consider the following data on annual income (in 000's \$) categorized by gender and age.

Income	12	10	14	15	6	11	17
meome.	14	10	17	15	0	11	1/
Gender:	0	1	1	0	0	1	1
Age:	1	1	0	1	0	0	1

where Gender = 1 if male; 0 if female and Age = 1 if less than or equal to 35; 0 if greater than 35. Fit a linear model of Income on Gender and age. Interpret the results. (8+12)

21. Explain the procedure of Kyock and Almond scheme.

22. Explain the consequences of multicollinearity, heteroscedasticity and autocorrelation.

Max.: 100 Marks

(10x2=20)